The Apertos Reflective Operating System:
The Concept and Its Implementation

Yasuhiko Yokote

SCSL-TR-92-014

June 26, 1992

Sony Computer Science Laboratory Inc.
3-14-13 Higashi-gotanda, Shinagawa-ku,
Tokyo, 141 JAPAN

Copyright (© 1992 Sony Computer Science Laboratory Inc.

also appeared in the Proceedings of the 1992 International Conference on Object-Oriented
Programming, Systems, Languages, and Applications.

The Apertos'Reflective Operating System:
The Concept and Its Implementation

Yasuhiko Yokote
Sony Computer Science Laboratory Inc.
Takanawa Muse Building,
3-14-13 Higashi-gotanda, Shinagawa-ku,
Tokyo, 141 JAPAN

This paper proposes a framework for constructing an operating system in an open
and mobile computing environment. The framework provides object/metaobject
separation and metahierarchy. In the framework, we view object migration as
a basic mechanism to accommodate object heterogeneity. The relevance of the
proposed framework to existing system structures is discussed. We then present
a practical implementation of the Apertos operating system in this framework,
where reflectors are introduced for metaobject programming and MetaCore for
providing common primitives. We present some evaluation results of the Apertos
operating system. We also present related work in terms of reflection mechanisms

and systems.

1 Introduction

Due to the growing scale and increasing complexity
of systems, we must develop a new framework for
their construction. Scale and complexity motivate
us to investigate open-endedness and dependability
of objects. These are independent and both should
be provided by a system to an appropriate degree.
Advancing hardware and communication technol-
ogy yields a new paradigm called mobile comput-
ing and enables us to witness the reality of a mo-
bile computing environment. Here an object should
be free to move around a distributed environment,
because portable/mobile computers are moved fre-
quently from one place to another. Therefore, it
should also be open to evolve and adapt itself to
its execution environment.

'Formerly called Muse.

Although an object is open-ended, it is con-
strained by its execution environment or the real
world. Therefore, its execution environment should
be dependable. For example, some objects should
be trusted to give objects stable services. Some
objects have deadlines by which their tasks should
be finished. The open-endedness and dependabil-
ity properties of objects have to be individually ac-
commodated for each object, so that object hetero-
geneity is accomplished.

To accommodate objects in the mobile comput-
ing environment, we have to investigate object mi-
gration. Existing systems assume stability of com-
puters as well as objects. However, we have to
consider object migration as a basis of system de-
sign. The computational field model [Tokoro 90] is
a model which deals with object mobility.

Recently, it has become evident that the object-
oriented technology encourages modularization,
increases reusability and maintainability, gives
users/programmers a single unified perspective of
the system, as well as providing other advantages.
This helps us to construct a system that is large in

scale and complicated. An operating system is an
example of such a system.

In our framework, an object is the only con-
stituent of the system. We, however, cannot give an
object a single set of semantics and properties. The
semantics and property of an object change while
an object is running and when it evolves or moves.
Thus, we introduce object/metaobject separation
in the operating system design. Here, an object
is a container of information, whereas a metaob-
ject defines the semantics of its behavior. In our
system, each object has its own group of metaob-
jects, which gives an object abstract instructions or
metaoperations that define the object’s semantics.
In this sense, a group of metaobjects can be viewed
as a virtual machine, which can be optimized for an
object. Since a metaobject is also an object, there
are metaobjects for that metaobject. Thus, we in-
troduce metahierarchy, within which an object and
its group of metaobjects are defined.

Also, we introduce object migration as a basic
mechanism of the operating system for the mo-
bile computing environment in order to accommo-
date object heterogeneity. Here, object migration
is defined in such a way that an object changes
its group of metaobjects. That is, when an ob-
ject changes its behavior or property, it migrates
to another group of metaobjects. For example,
for an object to acquire persistence, it migrates
to a group of metaobjects that supports persistent
objects. Since portable/mobile computers are fre-
quently moving around networks, an object com-
municating with these computers has to change
its communication protocol from local to intercon-
nected. This occurs when the object migrates to a
group of metaobjects which has suitable protocol
modules to communicate with these computers.

The Apertos operating system is implemented
based on the proposed framework. In the oper-
ating system, an object is defined independently
from its execution environment to facilitate object
migration. Here, we introduce reflectors and Meta-
Core to implement the Apertos operating system.
A reflector is a metaobject which represents meta-
computing defined by a group of metaobjects. Ev-

ery reflector is represented within the reflector class
hierarchy. MetaCore is a terminal metaobject in
the Apertos operating system located in each com-
puter, it has no metaspace, and it provides the
common primitives for object execution.

This paper consists of the following sections. In
Section 2, we present the framework character-
ized by object/metaobject separation, metahierar-
chy, and object migration. The discussion in this
section includes the issues in structuring object-
oriented systems and a way to accommodate object
heterogeneity. We also discuss the relevance of the
proposed framework to existing system structur-
ing. Section 3 presents the implementation of the
Apertos operating system based on the framework.
After giving an overview of the Apertos operating
system, we introduce reflectors and MetaCore for
the implementation. In Section 4, we present some
results of our evaluation. We present the cost of the
MetaCore primitives described in Section 3 and the
cost of some reflector metaoperations. We also con-
sider a more efficient implementation of the Aper-
tos operating system. Section 5 presents related
work in terms of reflection systems and reflection
in operating systems. In Section 6, we describe
the current status of the implementation. Finally,
Section 7 concludes this paper.

2 The Framework for Con-
structing an Object-Oriented
Operating System

This section first presents object/metaobject sep-
aration and metahierarchy. Then, the discussion
moves to the structure of the operating system in
terms of object-oriented system construction and
object migration. Here we also discuss a way to
accommodate object heterogeneity. In summary
of this section, we discuss the relevance of the
proposed framework to existing operating system
structures.

2.1 The Model

We believe that the object level and metalevel
of abstraction should be separately described and
represented within the same framework. This al-
lows programmers to focus their attention on ob-
ject programming, or describing the methods for
Other
facilities such as finding target objects and lo-

solving problems provided by an object.

cal storage management are implemented using
the same framework of object programming at
For example, an object should
be described regardless of its lifetime (i.e., ei-
The lifetime of
an object is given by storage management de-

its metalevel.
ther temporary or permanent).
scribed in the object’s metalevel. For example,
we can write the following simple pseudo-code to
describe the object’s property at its metalevel.
metaobject Descriptor {

myname is Identifier;

execMode is State of execution;

instance is Permanent segment;

text is Shared segment;

queue is Queue of messages;

userStack is Execution stack;

comm is Method for communication;

memory is Method for storage
management ;

3

Here, Descriptor describes the object property
where eight slots are defined. Each slot denotes
a metaobject.

We introduce the notion of concurrent object-
oriented computing [Yonezawa and Tokoro 87] to
model an object. FEach object encapsulates the
state, methods which access the state, and a vir-
tual processor which executes its methods. Here
we introduce a metaobject. A metaobject is an ob-
ject which defines (a part of) the behavior of that
object. A virtual processor of an object can be
viewed as a metaobject. A metaobject supports,
for example, a way to communicate with other ob-
jects, virtual memory management and its policy,
and a way to handle a faulty operation.

In the model, an object is supported by a group
of metaobjects. Here we call a group of metaob-

jects a metaspace. An object has the semantics

of execution that are cooperatively provided by
metaob jects in a metaspace. Figure 1 shows a pos-
sible configuration of a system represented by the
model', where a white circle represents an object
and a gray area represents a metaspace. Since each

metaspace (52)

metaobject
(Directory)

metaspace (53)

metaobject
(Segment)

metaobject
(Namerp)

metaobject
(Memory)

metaobject
(File)

metaobject
(Pager)

metaspace (S4)

metaobject
(Disk)

metaspace (S9)
metaobject
BlockDevice

metaobject
(Network)

Figure 1: Object/Metaobject Separation and

Metahierarchy

metaobject composing a metaspace is an object,
we must introduce a metaspace for a metaobject,
so that the object and its metaspace are repre-
sented within their metahierarchy. The relation-
ship between an object and metaobjects compos-
ing its metaspace is relative. In the figure, metas-
paces (S1), (S2), and (S3) are composed of metaob-
jects for objects (a) and (b), object (c), and object
(d), respectively. Also, metaspaces (S4) and (S5)
are composed of metaobjects for metaobjects (Seg-
ment) and (Protocol), and metaobjects (File) and
(Memory), respectively. Here, metaobjects (Seg-
ment) and (Protocol) are members of metaspace
(S1) for objects (a) and (b), i.e., (Segment) and
(Protocol) are metaobjects of (a) and (b), whereas
they are objects whose metaspace is (S4).
Furthermore, since a metaspace consists of
metaob jects, a metaobject can be shared between

'Figure 1 shows the sufficient configuration for the
discussion, although the actual implementation is more
complicated.

metaspaces. In the figure, metaobject (Namer;)
is shared between metaspaces (S1) and (S4). Also
metaobjects (Protocol) and (Namery) are shared
between metaspaces (S1) and (S2), and metaspaces
(S2) and (S3), respectively. Thus, given an ob-
ject, we can construct a metahierarchy composed of
the hierarchy of metaspaces whose root is that ob-
ject. For example, object (c) has metaspace (S2),
whose metaspaces are (S4) for metaobject (Proto-
col), (S9) for metaobject (File), and metaspaces
for metaobjects (Directory) and (Namery)?, and
meta-metaspaces for metaobjects (Pager), (Net-
work), etc. This means that object (c) is given
the file service by metaspace (S2) which consists of
metaobjects (File), (Directory), etc. Metaobject
(File), in turn, is given the block service by metas-
pace (S9) which consists of metaobjects (Network)
and (BlockDevice).

2.2 The Object-Oriented Structuring

We believe an operating system should be con-
structed using object-oriented technology, in which
everything in a system that should be shared and
protected is an object. This encourages modular-
ization, increases reusability and maintainability,
gives users/programmers a single perspective of the
system, etc. Thus, it makes it possible to construct
a system that is large in scale and complicated.

However, when we consider everything as an ob-
ject, we encounter some difficulties. For example,
it is difficult to inspect the internals of an object,
because an object is protected against access from
other objects. Therefore every object must have
provided a method for exposing its internals which
would be helpful in the implementation of a de-
bugger. Also, it has been difficult to implement
an object manager such as an invocation manager
and a scheduler, because they need to access meta-
data such as a representation of a message and an
object’s state information.

Separating metaobjects from an object proposed
in the previous subsection enables us to overcome
the above difficulties. That is, an object is de-

2These metaspaces are not shown in the figure.

fined as a collection of metaobjects at its metalevel,
so that they can access the internals of that ob-
ject. Also, metaobjects are responsible for deliv-
ering messages between objects and for scheduling
objects, so that they can provide optimal communi-
cation protocols and scheduling policies. Metadata
for object management is an object at its metalevel.
In this way, we can implement several mechanisms
which help the above difficulties. These include:

e inspecting the internals of an object,

e knowing the state of an object within its exe-
cution environment,

e changing a policy of object management such
as object scheduling and memory manage-
ment,

e handling exceptional events such as increasing
system load and missing a deadline.

e delivering a message to a destination object,

e creating a new object or deleting an existing
object, and so on.

By relaxing the connection between an object
and its metaspace, we can accommodate object
heterogeneity. As discussed in the introductory
section, each object has its own properties. Some
objects are temporary and have short lifetimes.
Some objects such as a name server and a directory
service are shared by many client objects. Other
objects depend on the underlying hardware, which
include device drivers. However, the system cannot
impose a single property on an object. The prop-
erty of an object changes as an object grows or
evolves. An object having no replica will be repli-
cated, for example, to increase availability when it
receives many message from clients on several sites.
One of the sources of the object heterogeneity prob-
lem is that some objects depend on its execution
environment or operating system services. There
are objects such as device drivers which are, of
course, inherently dependent on their underlying
hardware. However, others are not. In the next
subsection, we introduce object migration to facil-
itate the accommodation of object heterogeneity.

2.3 Object Migration

We introduce object migration as a basic mech-
anism of the operating system for the open and
mobile computing environment in order to accom-
modate object heterogeneity. Object migration is
defined in such a way that an object changes its
metaspace, i.e., an object travels a metahierarchy.
In Figure 1, for example, we say object (a) of
metaspace (S1) migrates to metaspace (S2), that is,
object (a) changes its metaspace from (S1) to (S2).
Also we can say object (a) migrates to metaspace
(54).

Accommodating object heterogeneity benefits
from object migration. That is, when it cannot
continue its execution as it evolves or changes, it
can migrate to a new metaspace to continue its ex-
ecution. Object migration is performed by metaob-
jects in the source and destination metaspaces.
Since the internals of an object are represented as
metaobjects, transferring an object is equivalent to
transferring metaobjects to the target metaspace.

Further, we can describe operating system ser-
vices within a single framework. For example,
an object can migrate to a metaspace which rep-
resents a secondary storage, when an object is
to be stored onto a disk. Also, an object can
migrate to a metaspace which has debugging fa-
cilities, when an object is to be debugged. In
this case, since a metaobject represents the in-
ternals of an object, a debugger can be imple-
mented as a metaobject. The following is a sim-
ple pseudo-code describing the former process:

object method example {

dest := mymeta.find(secondary storage);

mymeta.migrate(dest);

In this example, an object explicitly requests
its metaspace to transfer itself to the sec-
ondary storage metaspace. In turn, the
migration process in metaspace can be de-

scribed by the following simple pseudo-code:

metaobject method migrate(dest) {
dest.checking
compatibility(self description);

=ok is returned {

dest.transfer(object descriptor);

iterate member

in object descriptor {
dest.transfer(member) ;

3

return(status success);

}
=fail is returned {
return(status fail);

X
X

Here, before migration, compatibility between the
original and destination metaspaces is examined.
The detailed discussion is given in Subsection 3.2.
Then, since an object descriptor, a representation
of an object in a metaspace, is a collection of the
references to metaobjects, the original metaspace
transfers each metaobject to its destination.

2.4 Summary and Comparison

The framework proposed in this section is charac-
terized by:

e object/metaobject separation,

e metahierarchy, and

e object migration.

Object/metaobject separation is beneficial for pro-
grammers in the sense that they can be freed from
writing codes which depend on the execution envi-
ronment. It overcomes some difficulties in object-
oriented operating system structuring discussed in
Subsection 2.2. Metahierarchy can provide disci-
pline for metaobject programming where objects
and metaobjects are separated. Object migration
in this framework is a way to solve the object het-
erogeneity problem. Operating system services can
be implemented using object migration, by intro-
ducing object migration as a basic mechanism of
the system.

Although it will become difficult to meet all the
requirements of user/programmers as the scale of
the system grows, our framework can provide mul-
tiple execution environment for them. In Figure 1,
for instance, metaspace (S1) provides segment vir-

tual memory management for objects, and metas-
pace (S2) provides a file system capability for ob-
jects. We can also implement persistent object
storage as a metaspace. An object can be persis-
tent by moving it to that metaspace.

We can provide several novel services which
can be implemented within the above framework.
These include the following:

e Since a metaobject is responsible for deliver-
ing a message, it can construct the optimal
network protocol for delivering a message to
its target.

e Since the internals of an object are described
by metaobjects and the semantics of an object
is given by a metaspace, we can provide the
optimal services, that is, for example, we can
implement memory management suitable for
object granularity [Yokote et al. 91a].

e Since metaspace is responsible for providing
computational resources for object execution,
it can provide sufficient resources to an object,
so that an object with a realtime constraint is
less likely to miss its deadline.

e Since multiple execution environment can be
provided for users and programmers, it helps
us to bridge the gap between new and old ser-
vices, that is, to build a new system without
sacrificing compatibility.

These have been difficult to implement in existing
systems, however, our framework facilitates their
implementation.

Several operating system structures have been
proposed for increasing modularity, availability,
and safety. These include the micro-kernel ap-
proach and the virtual machine approach. In the
micro-kernel approach, operating system services
are implemented as a collection of processes de-
fined outside of the kernel. Recent operating sys-
tems takes this approach because their kernels are
too complicated to implement as single module.
In the virtual machine approach, the underlying
hardware is virtualized as a virtual machine. In
the sense that operating systems are constructed
on top of the virtual machine, virtual machine can
be viewed as a micro-kernel. In contrast to these

structures, our framework constrains its structure
to be constructed as a collection of objects which
is described within the single framework character-
ized by object/metaobject separation, metahierar-
chy, and object migration. This allows us to solve
the difficulties discussed in Subsection 2.2 as well
as to eliminate compromise yielded by the difficul-
ties. The compromise sometimes complicates the
system structure and makes it difficult to use.
There have been object-oriented distributed op-
erating systems such as Amoeba [Tanenbaum et al.
90], Chorus [Rozier et al. 88], and Choices [Russo
et al. 88].
case of Amoeba, an object is a passive entity,
which is accessed by an active entity, a process.

These systems support objects. In

The Amoeba kernel provides basically three sys-
tem calls which define communication between pro-
cesses. In case of Chorus, an object is an active
entity, in which one or more activities, or threads,
can be associated. The Chorus kernel is a micro-
kernel by which minimum mechanisms such as
inter-thread communication, virtual memory man-
agement, and mechanisms for realtime schedul-
ing are implemented. In Choices, their operat-
ing system is described using object-oriented pro-
gramming language, C++. In an early version of
Choices, benefits of object-oriented programming
were restricted to operating system programming.
Recently, this restriction is eliminated, i.e., we can
implement both application objects and system ob-
jects within the same framework [Campbell et al.
91].

In these systems, their basic abstraction is de-
fined by their kernel. That is, a kernel defines the
distinct level of abstraction, i.e., it defines the in-
terface to application objects. In case of Chorus,
for instance, object-oriented interface is provided
by its kernel. A kernel thus defines the bound-
ary between the one that employs that abstraction
for objects and the other that implements that ab-
straction. In contrast to these systems, the Aper-
tos operating system can be differentiated by the
following. Apertos encourages concurrent object-
oriented programming. Even modules that consti-
tute a kernel in the existing systems can be de-

fined as concurrent objects in our system. This is
enabled by the framework proposed, particularly
thanks to object/metaobject separation. It also
increases reusability and maintainability of these
modules, and frees programmers from the burden
of kernel programming such as synchronization.
Further, in comparison to these systems provid-
ing single interface to objects, our framework can
provide multiple optimal interface to individual ob-
jects.

3 The Apertos Implementation

In this section, we present the practical imple-
mentation of the Apertos operating system based
on the proposed framework. First, we present an
overview of the Apertos operating system. Here we
discuss some of the design goals and introduce re-
flectors and MetaCore for the implementation. Af-
ter that, we present the implementation of reflec-
tors which are metaobjects composing the reflector
class hierarchy. Then, we present the implementa-
tion of MetaCore that provides the primitives for
object execution.

3.1 Overview of the Apertos Operating
System

The Apertos operating systems is targeted at the
operating system for constructing very large scale,
open, distributed system featured by mobile com-
puting. It is designed based on the framework pro-
posed in previous section. Amn object is the only
constituent of the system, whereas each object has
a metaspace consisting of metaobjects. Since the
system is based on object/metaobject separation
and metahierarchy, every system service is imple-
mented by metaobjects, each of which is a mem-
ber of a metaspace defined within metahierarchy.
For example, an object’s virtual storage is a collec-
tion of segment metaobjects and managed by a vir-
tual segment manager metaobject. These metaob-
jects are also implemented as objects, i.e., there are
metaspaces for these metaobjects. Here we have
a question of who provides local storage for the

segment metaobjects. The answer in the imple-
mentation is that we provide a paged virtual mem-
ory manager metaobject for these metaobjects. In
turn, local storage for a page virtual memory man-
ager metaobject is given by the physical memory
manager metaob ject.

For creation of an object, Apertos has several
class systems each of which is tailored for individ-
ual programming languages. A class system is a
metaspace in which metaobjects provide services
such as creating an object and giving immutable
properties of a class. In the implementation, a class
is defined as a static and immutable template for
objects [Yokote et al. 89]. Although a class sys-
tem supports a multiple inheritance mechanism,
the mechanism is only available at compile time,
i.e. class hierarchy is collapsed when an object is
compiled. When an object is created by operation
New provided by each metaspace, the request is
forwarded to a class system, and a new object is
created by that class system. Then, a class system
moves a new object to the original metaspace the
request is sent.

We have made the following design decisions
upon the Apertos design:

e We introduce a mechanism to define a metas-
pace which is represented within metahierar-
chy.

e We introduce a compile time facility to help
metaobject programming.

e We introduce a mechanism to check compati-
bility between metaspaces.

e We define the common primitives for objects
to accommodate object heterogeneity and al-
low us to implement object migration.

For the first item, we introduce a reflector which
is a metaobject representing a metaspace. For the
second item, we introduce the reflector class hierar-
chy within which each reflector is represented. For
the third item, we introduce a canSpeak() mech-
anism which is defined in the top of the reflector
class hierarchy. For the last item, we introduce
MetaCore which is a metaobject having no metas-
pace and shared among metaspaces on a machine.

3.2 Reflectors and their Class Hierarchy

A reflector provides an object with metaoperations
that are provided by metaobjects constituting a
metaspace and defines a group of metaobjects. A
reflector is defined within a class hierarchy, which
we call the reflector class hierarchy. It is beneficial
to reflector programming, i.e., we can reuse exist-
ing reflectors. The hierarchy also helps us examine
reflectors’ compatibility. The top of the hierarchy
is mCommon? which is an abstract class that pro-
vides succeeding reflectors with common facilities
such as object migration, a canSpeak() method,
and descriptors that designate metaobjects repre-
senting objects.

There are several reflectors defined as subclasses
of mCommon as shown in Figure 2. For example,

mCommon

mBaseObject ,ZeroObject mRealtime

mStorage

mPersistent mBuiltinClass

mDriveObject mSystem

Figure 2: A Portion of the Reflector Class Hierar-
chy

mDriveObject is a reflector which provides meta-
operations for interrupt handler programming of
device drivers. In the implementation, it is imple-
mented so that the duration of interrupt handling
is as brief as possible. mBuiltinClass is a reflector
which represents a metaspace for class objects, so
that it provides metaoperations to manage classes
such as relocating code segments and inspecting
the internals of a class. mRealtime is a reflector
which provides objects with a realtime scheduling
facility. We can define a new reflector which has
new metaoperations as a subclass of existing ones.

Figure 3 shows a simple view of the implemen-
tation of the Apertos operating system using re-

®In this paper, we use notation mReflector to name a
reflector.

flectors?. mZeroObject is a metaspace for re-
flectors mSystem, mBaseObject, and mRealtime,
mRealtime is a metaspace for a realtime object
whereas a realtime clock metaobject is a mem-
ber of metaspace mRealtime whose metaspace is
mSystem, In the succeeding subsections, reflectors
mZeroObject and mBaseObject are presented in
detail.

For checking compatibility of a metaspace upon
object migration, a canSpeak() mechanism is in-
troduced. Here, canSpeak() is a common method
for all reflectors which examines compatibility of
reflectors or metaspaces upon object migration.
When an object migrates to a metaspace, a metas-
pace should be compatible with the original metas-
pace. Compatibility is defined in such a way that
when an object can continue execution after it mi-
grates to a metaspace, the original and destina-
tion metaspaces are totally compatible; when an
object can continue its execution with some restric-
tions after it migrates to a metaspace, the original
and destination metaspaces are partially compati-
ble; when an object cannot continue execution af-
ter it migrates to a metaspace, the original and a
destination are incompatible.

In the implementation, compatibility depends on
the reflector class hierarchy and is determined by
a canSpeak() method. Several system services
can be discussed from the viewpoint of the reflec-
tor compatibility. For example, disconnected op-
erations for portable computers, which are opera-
tions performed while portable computers are dis-
connected from a network®, can be described by
object migration and reflector compatibility. That
is, before starting disconnected operations, objects
migrate to a portable computer to continue execu-
tion. Here, a metaspace on a portable computer is
partially compatible with the original metaspace,
so that the objects incur a limitation of services.
Also, since the metaspace on the portable computer

*Since it is difficult to depict the actual implementation
due to its complication, the figure shows so simple as to
understand the implementation.

®*For example, Coda [Kistler and Satyanarayanan 91] sup-
ports disconnected operations for its file system.

H 7, S
K e - PP —
....... O

i mDrivei

=, s
4 S
S mnnnnny!

RRLLCOITTTETN TIPS
3

............. E mSyStem Eg‘ mB bJeCt ',é ._7

B
‘Gummnmmnnnnny 3

K
CCLLEEETTTTTATRTRITTTTTTI

realtime objects
inRealtime;

7 ~
?
s
H

Figure 3: The Simple View of the Apertos Implementation using Reflectors

knows it is only partially compatible for certain ob-
jects, it can take appropriate action when objects
cannot continue their execution.

3.2.1 mZeroObject

The mZeroObject reflector provides facilities for re-
flector programming, having the operations shown
in Table 1.
flectors only. In the current implementation of
mZeroObject it provides both synchronous and

asynchronous communication facilities using con-

These operations are used by re-

tinuations (Call, Force, Send, Reply, and Return).
A continuation designates a point where execution
is resumed with the replied result. A continuation
enables a reflector to accept another request after
issuing commands for blocking operations such as
Call and Force. This also reduces the so called re-
mote delay [Liskov et al. 85].

mZeroObject has no New and Delete operations,
therefore a new reflector must be created by the fol-
lowing procedures. First, a new reflector is created
by a metaspace which has the ability to create a
new object. Then, it must migrate to mZeroObject
using the Migrate operation. The reason why we
adopt such an implementation is that mZeroObject
is intended to be free from the details of mem-

ory management, and therefore, it has no ability
to manage virtual storage.

The protocol of migration can be divided into
two steps. The first step is to receive a descrip-
tor from a reflector that creates a new reflector,
which includes name of metaobjects composing a
migrating reflector and sufficient information to re-
sume object execution. At this step, canSpeak()
is invoked to examine whether it is a reflector. The
second step is to transfer the contents of a reflector.
In the implementation, all of reflectors on the same
machine occupy the same address space, so that
the actual transfer is not made, i.e., mZeroObject
installs a receiving descriptor as a new reflector.

mZeroObject maintains the internal scheduler to
control execution of reflectors. It also maintains a
map of an object and its reflector (or metaspace),
so that a reflector can send a message to a tar-
get object without knowing its reflector. Further,
each host has only one mZeroObject in the current
implementation. mZeroObject is intended to be a
metaspace for reflectors in this way.

3.2.2 mBaseObject

The mBaseObject reflector provides facilities for

concurrent object-oriented programming. 1t has the

Table 1: The mZeroObject Interface

primitive description

Call invokes a method defined in the target object (a metaobject or reflector). This activates
the internal scheduler that determines the reflector to be next activated.

Force performs the same operation as Call. However, it never activates the internal scheduler.
That is, a method of the target is directly invoked if the target is not busy. Otherwise,
an error is returned.

Send performs the same operation as Call except that the object that issues operation Send
continues execution.

Reply delivers the result back to the point that the continuation designates. It activates the
internal scheduler to find the reflector to be next activated.

Return | performs the same operation as Reply except that it never activates the internal sched-
uler. If the reflector that is to be activated by Return is busy, an error is reported.

Preempt | takes CPU execution priority away from the running reflector. It is usually requested
by a reflector of an interrupt handling ob ject.

Exit terminates reflector execution. This causes the internal scheduler to pick up another
reflector to be scheduled.

Find returns a map between an object and its reflector.

Install sets up a map between an object and its reflector.

Migrate | moves a reflector created by another reflector (or metaspace) to this reflector,
mZeroObject,

operations shown in Table 2. In the current imple-
mentation of mBaseObject, it provides both syn-
chronous and asynchronous communication facili-
ties with remote procedure call semantics. In con-
trast to mZeroObject, it provides the New and
Delete operations. Since mBaseObject encourages
concurrent object-oriented programming, an object
cannot make a request for raw memory allocation
such as malloc(), i.e., New and Grow are the only
ways to allocate memory.

Reflector mBaseObject has two interface: one is
the above interface which is used for objects, and
the other is the following interface shown in Table 3
which is used for other reflectors and metaobjects
sending a message to this reflector. In addition,
mBaseObject makes public several continuations
for the requests sent by New, Delete, Grow, and
Shrink in Table 2.

The migration procedure between reflectors is
the following. It is similar to the one of
mZeroObject, That is, the protocol of migration

10

can be divided into two steps. The first step is to
transfer a descriptor to the target reflector, which
includes name of metaobjects composing a migrat-
ing object and sufficient information to resume ob-
ject execution. At this step, canSpeak() is invoked
to examine compatibility. The second step is to
transfer the contents of an object, i.e. metaobjects,
either eagerly or lazily. This step is the responsi-
bility of memory management metaobjects. If two
metaspaces are on the same host, they are usually
not transferred.

3.3 MetaCore

MetaCore is a terminal metaobject which has no
metaspace and is similar to a micro-kernel in exist-
ing systems. It provides all type of objects with the
common primitives facilitating object/metaob ject
separation and object migration. We have laid
down the following design goals:

e MetaCore should have no knowledge of ob-

ject identity, because object identity should be

Table 2: The mBaseObject Interface to Objects

invokes a method defined in the target object. This activates the internal scheduler
that determines an object to be activated next. If the target is not ready to accept
the request, it is stored into the queue maintained in a descriptor that is managed by

performs the same operation as Call except that the object that initiates the Send

delivers the result back to the sender object. It activates the internal scheduler to find
an object to be activated next. If a request is pending for the object initiating the

gives up the possession of the underlying CPU voluntarily. The internal scheduler

primitive description
Call

mBaseObject.
Send

operation continues execution.
Reply

Reply operation, it is scheduled to be processed.
New creates a new object.
Delete | removes an existing object.
Grow makes an object bigger.
Shrink | makes an object smaller.
Yield

selects an object to resume execution.
Find returns a map between an object and its reflector.
Install sets up a map between an object and its reflector.
Migrate | moves an object to another metaspace.

given by a metaobject.
e The execution time for all of the primitives
provided by MetaCore should be predictable.
For example, code for searching a data struc-
ture should not be included.
e The underlying CPU should be virtualized to
help object migration.
e MetaCore should be implemented as small as
possible for portability and maintainability.
For
metaobjects, called namers, which compose the hi-

the first item, object identity is given by

erarchical structure. We have introduced a hierar-
chical naming scheme for objects which can distin-
guish two or more objects without unique identi-
fiers [Fujinami and Yokote 92]. For the last item, in
the current MC68030 implementation, MetaCore
occupies 7456 bytes for text, 1220 bytes for initial-
ized data, and 4268 bytes for uninitialized data.
To meet these goals, we have introduced the
Context structure that represents the underlying
CPU. Figure 4 shows the MetaCore implementa-
tion. MetaCore maintains the Context structure

11

associated with an object by a reflector, that is, an
object requires the Context structure to execute its
method. One object is associated with one Context
in the current implementation (a gray arrow speci-
fies this association in Figure 4). Although a reflec-
tor holds the “meta-of” link, Context also holds the
same link as a cache (in Figure 4, a dashed arrow
represents the “meta-of” link). The internals of the
Context structure can only be accessed by Meta-
Core. An object can examine the internals of Con-
text using the primitives provided by MetaCore.
The Context structure currently maintains the in-
formation shown in Table 4. Although MetaCore
is not concerned with Context scheduling, it has to
maintain its state to avoid multiple execution of the
same Context. In the implementation, MetaCore
maintains four states, “free” that has no associa-
tion with an object, “busy” that is running on the
underlying CPU, “suspend” that causes Context
execution to wait to be resumed when receiving a
hardware interrupt, and “dormant” that is ready
to accept a new request.

Table 3: The mBaseObject Interface to Metaobjects

primitive

description

Deliver

Migrate
Preempt

delivers an incoming message sent by other reflectors.
reflector (or inter-metaspace) communication.

handles an incoming request of object migration.

takes away CPU execution priority, so that the running object is interrupted and the
internal scheduler of mBaseObject picks up another object to be executed. This is
provided to support an interrupt event, and usually used by mZeroObject,

This is provided for inter-

an association link between an
object and its Context structure

metaspace of

=

a meta-link between the
Context structures

metaspace of
this object

these objects

.'\'LQ?mex\‘ Qnte)h/v.

1
I
t .
me aobject \‘\ Contex\‘ t(.)ntext metaobject
\

mReflecto ii ﬁ - ﬁ mReflecto
O o metaspace 0
. reflectors

MetaCore

Figure 4: The MetaCore Implementation

In retrospect, we can review similar mechanisms
n [Levin et al. 75] and recently in [Anderson
91] and [Marsh et al.
that a kernel does not handle scheduling policies.

et al. 91] in the sense

MetaCore provides the public primitives shown in
Table 5.
C++ interface as shown in Figure 5.

We can use these primitives using a
The in-
terface is so designed as to be generic for any
CPU architecture. When a programmer wants to
by
primitive M, to MetaCore, he/she simply writes:
MessageM msg (MZERO_MIGRATE, pMigMsg);
if (msg.Act ().state == mcSUCCESS)
// Primitive M is successfully done.

else
// Primitive M has failed.

make a request for metaspace, for example,

The above code is usually hidden from program-

mers by libraries or compilers. Here, structure

12

MessageM is filled with the following values: mem-
ber code has a value specifying the request is
primitive M; member selector has a value of
MZERO_MIGRATE, which is the name of a method de-
fined in the reflector to which the request is sent;
member message has an address, pMigMsg, which is
delivered to a reflector; and member inherit has a
value FALSE, which designates priority inheritance
upon Context activation.

3.4 Summary

The Apertos operating system is totally based on
the framework proposed in the previous section.
The current implementation has paid as much at-
tention to keep obeying the framework as possible
and has made a sacrifice of its performance. In

Subsection 4.3, we discuss several ways to improve

Table 4: The Elements of Context Structure

elements description
name Name of structure Context used to designate Context by a reflector.
link Two links are supported: one is a link to the meta- Context structure representing
metacomputing, and the other is a link to Context representing object computing
that has recently activated metacomputing.
priority Priority of CPU execution which is installed in the interrupt priority mask field

working area
register set
mode

state
entry table

(in the case of MC68030) before Context activation.

This is provided for user and system modes of Context execution.

This is used to save/restore hardware registers when Context changes.

Mode of Context execution. In the case of MC68030, two modes, user and system,
are supported.

State of Context execution.

This maintains addresses to start Context execution.

overall system performance.

The features of the Apertos implementation is

summarized by:

o reflectors and their reflector class hierarchy,
which provide users/programmers with proto-
cols for metaobject programming.

e MetaCore, which defines the common primi-
tives for object execution.

The several advantages of the system stem from the
Apertos implementation. The primitives provided
by MetaCore is generic but sufficient for construct-
ing the operating system for mobile computing en-
vironment. This also allows us the quick imple-
mentation for a new architecture.

4 Evaluation

We have measured the cost of the primitives pro-
vided by MetaCore and the cost of metaoperations
particularly provided by reflectors mZeroObject
and mBaseObject, The results from the mea-
surement of primitive M and operation Call of
mBaseObject are ramified into several steps. We
also offer some hints for the efficient implementa-
tion of the Apertos operating system. These results
have been measured on a Sony PWS-1550 work-
station which has a 25MHz MC68030 CPU with a

minimum 4MB of physical memory.

13

4.1 The Cost of MetaCore Primitives

Table 6 shows the results of our measurement of the
primitives of MetaCore. In the table, primitive R

Table 6: The Cost of MetaCore Primitives

primitive cost (in usec)
M 65
R 84(D), 49(S)
CNew Tl~
CDelete 94
CBind 45
CUnbind 32
CSetAttribute 51~
CGetAttribute 48~

has two figures: (D) presents the cost of R when the
Context state is “dormant” and (S) presents the
cost when the Context state is “suspend.” When
the Context state is “suspend,” the Context val-
ues do not need to be restored, so that it shows a
lower cost. Also, primitives CNew, CSetAttribute,
and CGetAttribute vary in cost according to their
argument, and the figures shows minimum values.
In contrast to these primitives, the M and R primi-
tives are guaranteed to take the fixed time as shown
in the table.

Table 7 shows the time interval between the oc-

Table 5: The MetaCore Interface

makes a request for metacomputing. This causes the execution of Context that
is designated by the “meta-of” link. M causes object execution to stop, which

resumes object execution. In contrast to primitive M, R can resume execution
creates a new Context structure. CNew can take an argument which designates
This Context structure is reallocated by
associates Context with a hardware interrupt. It requires an argument which
includes a message to be delivered to an interrupt handling object. When a

hardware interrupt occurs, the active Context is suspended and its associated
Context is immediately activated to execute a method of an interrupt handling

primitive description

M

is then resumed by primitive R.
R

of any Contexts that M stops.
CNew

the initial information of a new Context structure.
CDelete designates a Context state as “free.”

CNew.
CBind

object.
CUnbind removes the association that is made by CBind.
CSetAttribute | installs specified parameters in Context.
CGetAttribute | retrieves specified parameters from Context.

currence of an interrupt and starting of the han-

dler. We measured the cost of an exception named Table 8: The Cost of mZeroObject Operations
Illegal Instruction. The ExceptionHandler is al- operation cost (in psec)
Call 445
Table 7: The Cost of Exception Handler of Meta- Force 246
Core Send 495
primitive cost (in psec) Reply 475
- Return 214
ExceptionHandler 76~ .

Exit 246
Find 374
ways invoked by underlying hardware. It supplies a Install 556
message (HardMessage in the implementation) and Migrate 840

This

process eventually activates an exception handling

activates Context that handles exceptions.

object. The cost of ExceptionHandler depends on
the format of the exception stack frame. In the
case of the above measurement, MC68030 pushed
8 bytes of data onto a system stack.

4.2 The Cost of Metaoperations

Table 8 shows the cost of the operations provided
by mZeroObject, These figures include the over-
head of a stub procedure. Table 9 shows the cost of

14

the operations provided by mBaseObject, Further,

Table 9: The Cost of Some mBaseObject Opera-
tions

operation cost (in psec)
Call/Reply roundtrip 423
Send 374

1: struct Message {

2: magicword magic; // magic

3: longword code; // primitive code
4: // initializing

5: Message (longword c);

6: F;

7: struct MessageM : Message {

8: longword selector; // selector of meta-computing
9: voidx message; // message to meta-computing
10: Boolean inherit; // TRUE inherits the priority

11: // initializing

12: MessageM (longword select = UNDEF, void* pMsg = NULL,
13: Boolean in = FALSE);

14: // primitive interface to MetaCore

15: SysError Act ()

16: SysError M (longword select, void* pMsg = NULL,
17: Boolean in = FALSE);

18: };

19: struct MessageR : Message {

20: // Context to reflect the result of meta-computing

21: CName context;

22: // selector of object-computing quickly to be resumed
23: longword selector;

24: // message to object-computing to be resumed

25: voidx message;

26: // TRUE inherits the priority

27: Boolean inherit;

28: // initializing

29: MessageR (CName ctxt = UNDEF, longword select = UNDEF,
30: void* pMsg = NULL, Boolean in = FALSE);

31: // primitive interface to MetaCore

32: SysError Act O

33: SysError R (CName ctxt, longword select = UNDEF,
34: void* pMsg = NULL, Boolean in = FALSE);
35: };

Figure 5: A Portion of the Message Structure to MetaCore

Table 10 shows the cost of object creation. Here,
since it is a function of the object size, we show two
examples. In the current implementation, Apertos

Table 10: The Cost of Object Creation (Operation
New of mBaseObject)

size in byte(text+data+bss)
98284-2368+4188
135004-271004-4188

cost (in msec)
25.4
33.3

assigns the same address space to one or more ob-
jects, so that data in the text and data segment
should be relocated to their own addresses upon

15

object creation. These operations are not guaran-
teed to take the same time: they depend on the
number of objects, the size of the objects, etc.

4.3 Toward a More Efficient Implemen-
tation

We divide a procedure of primitive M into the fol-
lowing steps:

1. handling a trap: a procedure to transfer con-
trol to Context of MetaCore using the trap
instruction, which includes the overhead of a
stub procedure.

2. savingregisters: a procedure to store hardware
registers to register set of Context.

3. checking a message: a procedure to check
whether a message is correct.
4. finding Context:

text designated by MessageR. This procedure

a procedure to find Con-

is only valid for primitive R.

5. checking validity of meta-Context: a proce-
dure to check whether the values of Context
are correct.

6. restoring meta-Context: a procedure to load
appropriate values into Context that is to be
resumed.

7. restoring registers: a procedure to load values
stored in Context into hardware registers.

8. resuming execution: a procedure to transfer
control to a metaobject, i.e. meta-Context,
which includes the overhead of a stub proce-
dure.

Since the Context structure has a “meta-of” link, it
does not need to search for meta- Context. Also, we
divide primitive R into similar steps except for the
step that searches for Context (step 4). Table 11
shows the result of our measurement of the above
steps.

The steps that take time to process are steps 1,
2, 7, and 8, which account for over 40% of the total
processing time. It is difficult to eliminate these
steps, particularly steps 2 and 7, even by using
an assembler language, because primitive M causes
Context to change. However, we can eliminate the
trap instruction by using the similar mechanism to
inline caching when it does not change the CPU
execution mode.

From the table, step 5 accounts for roughly one
quarter of the total processing time, so that a way
to reduce overall cost is to reduce this step. In the
current implementation, the content of the Con-
text structure is guaranteed upon its activation, so
that step 5 takes a certain amount of time. How-
ever, this step can be reduced by postponing the
checking, that is, we can insert a mechanism to
compensate for the incorrect Context using fault
detection mechanisms of the underlying CPU such
as page fault handling.

16

In comparison to the cost of UNIX® system calls,
primitive M takes 65usec, which roughly corre-
sponds with a null system call in UNIX. Our mea-
surement using NEWS-OS 4.1C (which resembles
UNIX 4.3 BSD) shows that it takes 64usec. That
is, primitive M incurs the same cost as UNIX. Also,
in the case of the ARTS kernel, a null system call
takes 30usec [Ishikawa 91a], which is two times
faster than primitive M. This is the same duration
as the sum of steps 1, 2, 7, and 8 of primitive M.

We divide the procedure of the mZeroObject
Call operation into the following steps:

1. handling a stub: a procedure to prepare for

the invocation of the Call operation.

2. locating a target descriptor: a procedure to
find the descriptor that designates a receiver
reflector.

3. enqueuing a target descriptor: a procedure to
add a target descriptor to the ready queue.

4. dequeuing a descriptor: a procedure to remove
a descriptor whose execution is to be resumed
from the ready queue.

5. preparing to resume execution: a procedure to
restore appropriate values to a descriptor and
construct MessageR in order to resume execu-
tion (with a message if any) using primitive
R.

In the implementation, mZeroObject maintains the
ready queue that is used to schedule reflectors. We
have measured the above steps and show the re-
sults in Table 12. Steps 1 and 5 account for one
half of the total processing time. That is, a consid-
erable amount of time is wasted for stub handling
in the current implementation. Since there is a
gap between an object of C4++ and an object of
the Apertos operating system, we need this small
stub in the current implementation. However, it
can be reduced by a stub generator or a compiler.

Further, [Masuhara et al. 92] proposes the sev-
eral ways to implement a reflective programming
language efficiently. Although their system struc-
ture is different from ours, some mechanisms such
as light-weight objects and non-reifying objects can

SUNIX is a registered trademark of AT&T Bell Labora-

tories.

Table 11: Break Down of Measurements for MetaCore M and R Primitives Costs

step M (in psec) | M, ratio (%)| R (in usec) | R, ratio (%)
1: handling a trap 5 7.7 9 10.7
2: saving registers 8 12.3 9 10.7
3: checking a message 3 4.6 4 4.8
4: finding Context - - 6 7.1
5: checking validity of Context 18 27.7 20 23.8
6: restoring Context 15 23.1 16 19.1
7: restoring registers 10 15.4 11 13.1
8: resuming execution 6 9.2 9 10.7
total 65 100 84 100

Table 12: Break Down of Measurements for mZeroObject Call Operation Cost

step cost (in psec)| ratio (%)
1: handling a stub 96 21.6
2: locating a target descriptor 41 9.2
3: enqueuing a target descriptor 159 35.7
4: dequeuing a descriptor 20 4.5
5: preparing and resuming execution 129 29.0
total 445 100

be applied to a more efficient implementation of the
Apertos operating system.

5 Related Work

The framework proposed in Section 2 is related
to reflective computing in programming languages
presented in [Smith 84], [Maes 87], etc. in the
sense that the model of an object is also repre-
sented within the same framework of an object and
described as metaobjects. Reflective computing in
the proposed framework is defined in such a way
that it is a process to improve or alter the ob-
ject’s behavior using the object migration mech-
anism. In the implementation, reflectors provide
objects with metaoperations for reflective comput-
ing. Thus, reflectors and their reflector class hierar-
chy describe protocols for reflection programming
called metaobjects protocols [Kiczales et al. 91].
In this section, we first discuss the relevance of the

17

proposed framework to reflection systems. We then
discuss the relevance of the framework to reflection
in operating systems.

5.1 Reflection Systems

Many systems that are based on a reflective ar-
chitecture have been proposed particularly in pro-
gramming languages such as 3-Lisp [Smith 84], 3-
KRS [Maes 87], Self [Holzle et al. 90], and CLOS
[Kiczales et al. 91]. We can compare these systems
from the viewpoint of various system structures,
i.e., how metaobjects are organized, how classes
are organized, how an object and its metaobject
correspond, how classes and metaobjects are differ-
entiated, etc. Since these systems are constructed
within a programming language framework, there
is a limitation on the management of computing
resources. Also, metaprogramming is achieved in a
single programming language.

ABCL/R2 [Matsuoka et al. 91] is an exam-

ple proposal which is equipped with two reflec-
tion structures, individual-based and group-wide
ones. While, in the former, each object has a
causal connection link to its own single metaob-
ject, in the latter, each object has a causal con-
nection link to a metagroup, a group of metaob-
jects. Here, computing resources are cooperatively
managed by a group of metaobjects as in Aper-
AL-1 [Ishikawa 91b] is another proposed ex-

ample. In his paper, a two-dimensional hierarchical

tos.

reflection model (recently a multi-model reflection
framework) was proposed. The model introduces
the notion of metafloor which describes an imple-
mentation of the above floor. A resource metafloor
is responsible for managing computing resources.
These approaches enable us to describe the man-
agement of computing resources in a programming
language framework.

Applying a reflective computing technology is
not limited to programming languages. Silica [Rao
91] is an example applied to a CLOS-based win-
dow system. Apertos is the first example which
applies the notion of reflective computing to a dis-
tributed object-oriented operating system. We can
find many other reflection systems in [Ibrahim 91].

In contrast to the above systems, the model pro-
posed for the Apertos operating system is the first
approach to defining object behavior as a collab-
orative group of metaobjects. We first proposed
it in [Yokote et al. 89] and elaborated in [Yokote
et al. 91b]. Here, metaspace is defined as a group
of metaobjects. Thus some metaobjects can be
shared among metaspaces. This contributes to
the implementation of a metaobject which needs a
common view among several objects, for instance,
a namer metaobject is shared among metaspaces,
so that it can define one naming domain per host.
This also enables us to implement a metaobject
which can access an inherently single object such
as a console device.

We are convinced that class hierarchy and
metahierarchy should be separately defined. In
Apertos, a class defines the structure of an object,
while a metaobject defines the computation of an
object. Thus, a class is introduced to accommodate

18

the structural heterogeneity such as programming
languages and underlying hardware. A metaobject
is introduced to accommodate the semantic hetero-
geneity such as difference in communication and
difference in lifetime.

5.2 Reflection in Operating Systems

An operating system is inherently reflective: it has
facilities to inspect system data structure main-
tained by a kernel and to inspect the internals of
a process, such as /dev/kmem in UNIX. However,
these have a limitation in their use, that is, since
they are mechanisms provided by an operating sys-
tem kernel, it is difficult to alter their behavior.
Also, in virtual memory management, we can
UNIX provides
madvise() for it. Recently, Mach [Tevanian 87|

specify its management policy.

and Chorus [Abrossimov et al. 89] introduce user-
level virtual memory management as an external
pager. Using an external pager approach enables
us to write a code for an application specific policy
for memory management. Further, in realtime op-
erating system, we can describe a realtime schedul-
ing policy which determines the process/thread
next to be executed. ARTS [Tokuda and Mercer
89] is an example of such a system providing pol-
icy /mechanism separation, where we can write a
policy module which uses mechanisms given by its
kernel to choose the thread to be run.

In contrast to these approaches, the framework
proposed in this paper has significant advantages.
In this framework, the system is constructed based
on object/metaobject separation and metahierar-
chy. This increases modularity of the system. That
is to say, the system components can be easily mod-
ified and reused to create a new service. From
the point of reflective computing, the primitives
shown in Table 5 are atomic operations to imple-
ment reflection mechanisms. Primitive M initiates
metacomputing that may make an object alter its
behavior. Primitive R terminates metacomputing
and resumes object execution. Primitives CNew
through CGetAttribute maintain the link between
an object and its metaspace or reflector. This link

is not fixed so that we can freely reconnect an
object with its metaspace. This helps us imple-
ment object migration. Without reflection mech-
anism, we encounter the difficulties such that we
cannot accommodate object heterogeneity, we can-
not adapt an object to its execution environment
given by mobile computers, and we cannot imple-

ment an optimal service for evolving objects.

6 The Current Status and Fu-
ture Work

The Apertos operating system has been im-
plemented on a Sony PWS-1550 workstation.
MetaCore has been stably operational for a
year. Reflectors mZeroObject ;,BaseObject, and
mDriveObject are also running. Metaobjects such
as managing virtual memory, storage devices, and
a console device are also available. The system is
implemented using the AT&T C++4 programming
language [Ellis and Stroustrup 90]. Libraries for
programming in the Apertos system are provided.

We are also implementing our system on a MIPS
R3000 based workstation. Since the MetaCore in-
terface is the same as the MC68030 version of the
system, reflectors and metaobjects for the CISC
implementation are compatible with the RISC im-
plementation.

The programming interface of the Apertos op-
erating system is not yet satisfactory. At present,
we have to write a simple stub by hand to make a
request for metacomputing. MC++, an extension
of C++, is intended to be designed to facilitate
reflective programming in C++. Also, writing re-
flectors is different from writing objects in the sense
that reflectors require two interface: one for objects
and the other for reflectors and metaobjects. These
two interfaces should be elegantly incorporated in
a programming language.

Further, the canSpeak() method is restrictive in
that it uses a reflectors class hierarchy to examine
compatibility. We need to continue the investiga-
tion of this mechanism.

19

7 Conclusion

We proposed the framework of the object-oriented
operating system for an open and mobile comput-
ing environment. The framework is characterized
by object/metaobject separation, metahierarchy,
and object migration. Object/metaobject sepa-
ration and object migration help users and pro-
grammers to accommodate object heterogeneity.
These enable us to provide the mechanisms such
as changing a communication paradigm, inspect-
ing the internals of an object for a debugger, and
changing resource management policy. Metahier-
archy provides discipline for programming in ob-
ject/metaobject separation. Object migration is
a basic mechanism of the operating system in or-
der to accommodate object heterogeneity. These
hide the underlying implementation from an ob-
ject and increases mobility of object, so that these
contribute to the realization of an open and mobile
computing environment.

We introduced reflectors for metaobject pro-
gramming and MetaCore for providing the com-
mon primitives for object execution. Reflectors
are defined within their reflector class hierarchy,
which describe protocols for metaobject program-
ming. MetaCore is a terminal metaobject hav-
ing no metaspace located at each computer and
a very small kernel which implements the primi-
tives of the Apertos operating system. Further,
we presented the cost of the MetaCore primitives
and some metaoperations, and discussed ways to
further improve the efficiency of the Apertos oper-
ating system.

The prototype implementation of the Apertos
operating system is available to anyone for non-
profit purposes’.

Acknowledgments

I offer my sincere thanks to Prof. Mario Tokoro,
the director of the Sony Computer Science Lab-

"Information about the distribution of the Apertos op-
erating system is available through anonymous FTP from
scslwide.sony.co.jp (133.138.199.1).

oratory Inc. He and I have been collaboratively
investigating the conceptual design of the Apertos
operating system. I also give my thanks to mem-
bers of the Apertos project at Sony Computer Sci-
ence Laboratory Inc. and to Dr. Hideyuki Tokuda
of Carnegie Mellon University. Several discussions
with these people were helpful to us in design-
ing the structure of the system and its reflector
Further, I thank Dr. Takao Tenma and

Mr. Nobuhisa Fujinami of Sony Computer Science

classes.

Laboratory Inc. who read my draft paper and gave
me many useful comments for improvement. I also
thank Mr. Atsushi Mitsuzawa who helped me to
measure the cost of the primitives of the Apertos
operating system. Finally, I thank reviewers of this
paper.
improving this paper.

Their valuable comments were useful for

References

[Abrossimov et al. 89] Vadim Abrossimov, Marc
Rozier, and Marc Shapiro. Generic Virtual Memory
Management for Operating System Kernels. In Pro-
ceedings of the 12th ACM Symposium on Operating
System Principles, pp. 123-136, December 1989.

[Anderson et al. 91] Thomas E. Anderson, Brian N.
Bershad, Edward D. Lazowska, and Henry M. Levy.
Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. In Pro-
ceedings of the 13th ACM Symposium on Operating
System Principles, pp. 95-109, October 1991.

[Campbell et al. 91] Roy H. Campbell, Nayeem Is-
lam, Ralph Johnson, Panos Kougiouris, and Peter
Madany. Chotices, Frameworks and Refinement. In
Proceedings of the 1991 International Workshop on
Object Orientation in Operating Systems, pp. 9-15.
IEEE Computer Society Press, October 1991.

[Ellis and Stroustrup 90] Margaret A. Ellis and Bjarne
Stroustrup. The Annotated C++ Reference Manual.
Addison Wesley, 1990.

[Fujinami and Yokote 92] Nobuhisa Fujinami and Ya-
suhiko Yokote. Naming and Addressing of Objects
without Unique Identifiers. In Proceedings of the 12th
International Conference on Distributed Computing
Systems, June 1992. also appeared in SCSL-TR-92-
004 of Sony Computer Science Laboratory Inc.

[Holzle et al. 90] Urs Holzle, Bay-Wei Chang, Craig
Chambers, and David Ungar. The Self Manual —
Version 1.0, June 1990.

20

[Ibrahim 91] Mamdouh H. Ibrahim, editor. Proceedings
of the OOPSLA’91 Workshop on Reflection and Met-
alevel Architectures in Object-Oriented Programming,
1991.

[Ishikawa 91a] Yutaka Ishikawa. Position Paper on I-
WOOOS, 1991. appeared in the collection of position
papers for the International Workshop on Object-
Orientation in Operating Systems.

[Ishikawa 91b] Yutaka Ishikawa. Reflection Facilities
and Realistic Programming. ACM SIGPLAN NO-
TICES, Vol. 26, No. 8, August 1991.

[Kiczales et al. 91] Gregor Kiczales, Jim des Riviéres,
and Daniel G. Bobrow. The Art of the Metaobject
Protocol. The MIT Press, 1991.

[Kistler and Satyanarayanan 91] James J. Kistler and
M. Satyanarayanan. Disconnected Operation in the
Coda File System. In Proceedings of the 13th ACM
Symposium on Operating System Principles, pp. 213—
225, October 1991.

[Levin et al. 75] R. Levin, E. Cohen, W. Corwin,
F. Pollack, and W. Wulf. POLICY/MECHANISM
SEPARATION IN HYDRA. In Proceedings of the
5th ACM Symposium on Operating System Princi-
ples, pp. 132-140. ACM Press, November 1975.

[Liskov et al. 85] Barbara Liskov, Maurice Herlihy, and
Lucy Gilbert. Limitations of Synchronous Communi-
cation with Static Process Structure in Languages for
Distributed Computing. Technical Report Program-
ming Methodology Group Memo 41-1, Massachusetts
Institute of Technology, September 1985.

[Maes 87] Pattie Maes. = COMPUTATIONAL RE-
FLECTION. Technical Report TR-87-2, VUB Al-
LAB, 1987.

[Marsh et al. 91] Brian D. Marsh, Michael L. Scott,
Thomas J. LeBlanc, and Evangelos P. Markatos.
First-Class User-Level Threads. In Proceedings of the
13th ACM Symposium on Operating System Princi-
ples, pp- 110-121, October 1991.

[Masuhara et al. 92] Hidehiko Masuhara, Satoshi Mat-
suoka, Takuo Watanabe, and Akinori Yonezawa.
Object-Oriented Concurrent Reflective Languages
can be Implemented Efficiently. In Proceedings of
Object-Oriented Programming Systems, Languages
and Applications in 1992. ACM Press, October 1992.

[Matsuoka et al. 91] Satoshi Matsuoka, Takuo Watan-
abe, and Akinori Yonezawa. Hybrid Group Reflective
Architecture for Object-Oriented Concurrent Reflec-
tive Programming. In Proceedings of ECOOP’91 Fu-
ropean Conference on Object-Oriented Programming,
pp. 231-250, July 1991. Lecture Notes in Computer
Science 512.

[Rao 91] Ramana Rao. Implementational Reflection in

Silica. In Proceedings of ECOOP’91 European Con-
ference on Object-Oriented Programming, pp. 251—
266, July 1991. Lecture Notes in Computer Science
512.

[Rozier et al. 88] M. Rozier, V. Abrossimov, F. Ar-
mand, 1. Boule, M. Gien, M. Guillemont, F. Her-
rmann, C. Kaiser, S. Langlois, P. Léonard, and
W. Neuhauser. Chorus Distributed Operating Sys-
tems. Computing Systems, Vol. 1, No. 4, pp.305-370,
Fall 1988.

[Russo et al. 88] Vincent Russo, Gary Johnston, and
Roy Campbell. Process Management and Exception
Handling in Multiprocessor Operating Systems using
Object-Oriented Design Techniques. In Proceedings
of Object-Oriented Programming Systems, Languages
and Applications in 1988. ACM Press, September
1988. also appeared in SIGPLAN NOTICES, Vol.23,
No.11.

[Smith 84] Brian Cantwell Smith. Reflection and
Semantics in Lisp. In Proceedings of the 11th
ACM Sympostum on Principles of Programming Lan-
guages, January 1984.

[Tanenbaum et al. 90] Andrew S. Tanenbaum, Robbert
van Renesse, Hans van Staveren, Gregory J. Sharp,
Sape J. Mullender, Jack Jansen, and Guido van
Rossum. Experiences with the Amoeba Distributed
Operating System. Communications of the ACM,
Vol. 33, No. 12, pp-46-63, December 1990.

[Tevanian 87] Avadis Tevanian, Jr. Architecture Inde-
pendent Virtual Memory Management for Parallel
and Distributed Environment: The Mach Approach.
Technical Report CMU-CS-88-106, Department of
Computer Science, Carnegie Mellon University, De-
cember 1987.

[Tokoro 90] Mario Tokoro. Computational Field Model:

21

Toward a New Computing Model/Methodology for
Open Distributed Environment. In Proceedings of the
2nd IEEE Workshop on Future Trends in Distributed
Computing Systems, September 1990. also appeared
as Technical Report SCSL-TR~90-006.

[Tokuda and Mercer 89] Hideyuki Tokuda and Clif-
ford W. Mercer. ARTS: A Distributed Real-Time
Kernel. Operating Systems Review, Vol. 23, No. 3,
pp-29-53, July 1989.

[Yokote et al. 89] Yasuhiko Yokote, Fumio Teraoka,
and Mario Tokoro. A Reflective Architecture for an
Object-Oriented Distributed Operating System. In
Proceedings of ECOOP’89 European Conference on
Object-Oriented Programmang, July 1989. also ap-
peared in SCSL-TR-89-001 of Sony Computer Sci-
ence Laboratory Inc.

[Yokote et al. 91a] Yasuhiko Yokote, Atsushi Mit-

suzawa, Nobuhisa Fujinami, and Mario Tokoro. Re-
flective Object Management in the Muse Operating
System. In Proceedings of the 1991 International
Workshop on Object Orientation in Operating Sys-
tems, pp- 16-23. IEEE Computer Society Press, Oc-
tober 1991. also appeared in SCSL-TR-91-009 of
Sony Computer Science Laboratory Inc.

[Yokote et al. 91b] Yasuhiko Yokote, Fumio Teraoka,
Atsushi Mitsuzawa, Nobuhisa Fujinami, and Mario
Tokoro. The Muse Object Architecture: A New Op-
erating System Structuring Concept. ACM Operating
Systems Review, Vol. 25, No. 2, pp.22-46, April 1991.
also appeared in SCSL-TR-91-002 of Sony Computer
Science Laboratory Inc.

[Yonezawa and Tokoro 87] Akinori Yonezawa and
Mario Tokoro, editors. Object-Oriented Concurrent
Programmaing. The MIT Press, 1987.

